10 research outputs found

    Reconfigurable and multiband antennas with resonant and reactive loads

    Get PDF
    Reactive and resonant loads have been used from the very beginning of antenna design to improve impedance matching, bandwidth, and current distributions on antennas, and to create multiband and reconfigurable antennas.Trap loaded dipoles are one of the simplest resonator-loaded antennas and are traditionally loaded with either an inductor-capacitor pair or a quarter wavelength stub integrated into a dipole or monopole to create a second operating frequency at the trap resonant frequency. Adding resonant loads to antennas will only increase in popularity and practicality as filtennas are more often used for their SWaP improvements, better noise performance, and potential for additional degrees of reconfigurability. In this dissertation, I demonstrate that resonant loads can introduce lossy modes, and I significantly revise and expand the theory of the basic trap dipole antenna, which is a valuable aid in designing resonator loaded antennas with higher degrees of complexity. Based on the new analysis, I demonstrate novel series LC trap dipoles, dual-band inductor loaded trap dipoles, and parallel and series LC trap slots. The newly developed design process also allows for the integration of any kind of resonator or reactive load to be used to create trap style antennas. A reconfigurable load is also used to demonstrate novel tunable trap antennas. The design procedure is ultimately adaptable to any resonators that can be practically fabricated and physically incorporated into the antenna structure

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias∗∗This document does not cover atrial fibrillation; atrial fibrillation is covered in the ACC/AHA/ESC guidelines on the management of patients with atrial fibrillation found on the ACC, AHA, and ESC Web sites.—executive summary

    No full text

    2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia

    No full text

    2015 ACC/AHA/HRS Guideline for the Management of Adult Patients With Supraventricular Tachycardia

    No full text

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease

    No full text
    corecore